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Abstract. New integral relations between the eigenfunctions (Bessel functions and Legendre
functions) of the Helmholtz equation in spherical, cylindrical and Cartesian coordinate systems
are obtained. Expansion of particular solutions in one coordinate system with respect to
eigenfunctions of the same equation in another coordinate system is applied. A stationary
phase method is used to find the expansion coefficients.

1. Introduction

Expansions in functions forming a base of symmetry group representation are widely
exploited in quantum mechanics. We note their usefulness in finding very practical integral
relations between mathematical functions with potentially wide applications in physics and
technology.

The proposed method of finding such relations is applicable if the expansions contain
a parameter able to attain large values and the expansion coefficients are calculated by the
stationary phase method (or saddle-point method). As shown in the following, with the
example of the Helmholtz equation, the functions depending on that parameter factorize.
Due to factorization, the stationary phase method enables one to findexactexpressions for
the expansion coefficients.

2. Relations between eigenfunctions of the Helmholtz equation in different coordinate
systems

The particular solutions of the Helmholtz equation (which is the same as the Schrödinger
equation for free space) for three-dimensional infinite space

19 + k29 = 0

in the Cartesian(x, y, z), spherical(r, θ, ϕ) and cylindrical(ρ, z, ϕ) coordinate systems
have the following forms:

9kxkykz (x, y, z) ∝ ei(kxx+kyy+kzz) k2
x + k2

y + k2
z = k2 (1)
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9`m(r, θ, ϕ) ∝ eimϕ
√
k/rZ`+1/2(kr)P

m
` (cosθ) (2)

9mkz(ρ, z, ϕ) ∝ ei(mϕ+kzz)Zm
(
ρ

√
k2 − k2

z

)
(3)

where Pm` (cosθ) is the associated Legendre function,Z is any Bessel function,m =
0, 1 . . . `; ` ∈ N, r2 = ρ2 + z2, ρ = r sinθ, z = r cosθ, ϕ = arccot(x/y).

Functions (1)–(3) form the bases of the symmetry groups (translations, three-dimensional
rotations and screw translations along thez-axis) representations for the Helmholtz equation.
Each of these bases is a complete system. Any function can be expressed by one of the
bases.

Let us expand the function9mkz(ρ, z, ϕ) (equation (3)) with the definitek and kz in
terms of functions9kxkykz (x, y, z) (equation (1)). Sincek and kz are fixed the expansion
must involve the variablekx and certaink2

y = k2 − k2
z − k2

x :

eimϕH(j)
m (ρkt ) =

∞∫
−∞

dkx A
(j)(kx) exp

[
i
(
kxx ± y

√
k2
t − k2

x

)]
(4)

where kt = √
k2 − k2

z and the sign will be determined later. The common phase factor
exp(ikzz) is omitted. The Hankel functionsH(j)

m (z) (j = 1, 2) are convenient to begin
with, since the remaining Bessel functions can be expressed by their linear combinations.
The coefficientsA(j) are found below (see equations (13) and (15)). Substituting these
expressions into (4) one can see, that the integral (4) converges absolutely.

The expansion of the function (2) in terms of functions (3) takes the form

√
k/rH

(j)

`+1/2(kr)P
m
` (z/r) =

∞∫
−∞

dkz B
(j)(kz)H

(j)
m

(
ρ

√
k2 − k2

z

)
exp(ikzz) (5)

where the phase factor exp(imϕ) is disregarded. The Hankel functions appearing on both
sides of (5) bear the same upper indexj , as follows from their behaviour atρ → ∞.

The expansion of the function (2) in terms of functions (1) involves two variables,kx
andky :√
k/r eimϕH

(j)

`+1/2(kr)P
m
` (z/r)

=
∞∫

−∞

∞∫
−∞

dkx dky C
(j)(kx, ky) exp

[
i
(
kxx + kyy ± z

√
k2 − k2

x − k2
y

)]
. (6)

We look for functionsA(j)(kx), B(j)(kz) andC(j)(kx, ky). Since the identities (4), (5)
and (6) are fulfilled for arbitraryx, z and(x, y), respectively, one can express their Fourier
transforms as

2πA(j)(kx) exp
( ± iy

√
k2
t − k2

x

) =
∞∫

−∞
dx H(j)

m (ρkt ) exp[i(−kxx +mϕ)] (7)

2πB(j)(kz)H
(j)
m

(
ρ

√
k2 − k2

z

) =
∞∫

−∞
dz

√
k/rH

(j)

`+1/2(kr)P
m
` (z/r) exp(−ikzz) (8)
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(2π)2C(j)(kx, ky) exp
(
±iz

√
k2 − k2

x − k2
y

)
=

∞∫
−∞

dx dy
√
k/rH

(j)

`+1/2(kr)P
m
` (z/r) exp[−i(kxx + kyy −mϕ)]. (9)

In equations (7)–(9)ρ =
√
x2 + y2, r =

√
z2 + ρ2 andϕ = arccot(x/y).

Let us emphasize that the integral (7) aty 6= 0 exists as a limiting expression:

∞∫
−∞

dx(· · ·) = lim
R1,R2→∞

R2∫
−R1

dx(· · ·)

becauseH(j)
m ' ρ−1/2 at ρ → ∞. Integrals (8) and (9) have the similar sense.

Equations (7)–(9) contain parametersy, ρ and z, which may be large. Thus one can
compare both sides of these equations at large values of parameters and obtainexact
expressions forA(j), B(j) andC(j), because the latter do not depend on these parameters.
The procedure is successful, since the integrals (7)–(9) can be evaluated by the stationary
phase method in this limit.

In equation (7) forykt � 1 one can apply the asymptotic representation [1]:

H(1,2)
m (z) '

(
2

πz

)1/2

exp
[
±i

(
z −m

π

2
− π

4

)]
(10)

where the sign+(−) corresponds to the superscript 1(2) in the Hankel function. After
substitutionx = y cotϕ and (10) into the right-hand side of (7) we can write the integral
on the right-hand side of (7) fory > 0 in the following form:√

2y

πkt
exp

[
∓i

(
m
π

2
+ π

4

)] π∫
0

dϕ

sin3/2 ϕ
exp{i[yf (ϕ)+mϕ]} (11)

with

f (ϕ) = ± kt

sinϕ
− kx cotϕ .

For k2
x < k2

t , the phase functionf (ϕ) in the interval [0, π ] has one stationary point at
cosϕ0 = ±kx/kt and f (ϕ0) = ±(k2

t − k2
x)

1/2; (d2f/dϕ2)ϕ=ϕ0 = ±kt [1 − (kx/kt )
2]−1/2.

Taking the integral in (11) by the stationary phase method we obtain

2 i−m√
k2
t − k2

x

[
1 + O(1/ykt )

]
exp

[
±i

(
y

√
k2
t − k2

x +m arccos
kx

kt

)]
. (12)

The next term in the asymptotic expansion (10) is of the order ofz−1, that is(ykt )−1 sinϕ
in variables of the integral (11). Therefore this expansion is uniformly asymptotic with
respect toϕ at ykt � 1 and can be integrated.

Matching the leading term in (12) atykt � 1 with the left-hand side of (7) gives

A(1,2)(kx) = i−m

π

√
k2
t − k2

x

exp

(
±im arccos

kx

kt

)
(13)

where the signs± correspond to the superscripts(1, 2).
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Hence, we write (7) fork2
x < k2

t in the form
∞∫

−∞
dx H(j)

m (ρkt ) exp[i(−kxx +mϕ)] = 2 i−m√
k2
t − k2

x

exp

[
±i

(
y

√
k2
t − k2

x +m arccos
kx

kt

)]
.

(14)

For k2
x > k2

t , the stationary point is displaced from the real axis in the complex planeϕ and
we obtain

A(1,2)(kx) = ∓i1−m

π

√
k2
x − k2

t

exp

(
−m sgnkx arch

|kx |
kt

)
(15)

∞∫
−∞

dx H(j)
m (ρkt ) exp[i(−kxx +mϕ)] = ∓2 i1−m√

k2
x − k2

t

exp

(
−y

√
k2
x − k2

t −m sgnkx arch
|kx |
kt

)
.

(16)

Integrals (14) and (16) may be rewritten in the limits 0 and∞, sinceϕ = arccot(x/y) =
π/2 − arcsin(x/ρ).

By using the relations [1]:

H(1)
m (z)+H(2)

m (z) = 2Jm(z) H (1)
m (z)−H(2)

m (z) = 2iYm(z) (17)

we obtain from (14) and (16)
∞∫

0

dx Jm(ρkt ) cos[kxx +m arcsin(x/ρ)]

=


(−1)m√
k2
t − k2

x

cos

(
y

√
k2
t − k2

x +m arccos
kx

kt

)
for k2

x < k2
t

0 for k2
x > k2

t

(18)

∞∫
0

dx Ym(ρkt ) cos
[
kxx +m arcsin(x/ρ)

]

=



(−1)m√
k2
t − k2

x

sin

(
y

√
k2
t − k2

x +m arccos
kx

kt

)
for k2

x < k2
t

(−1)m+1√
k2
x − k2

t

exp

(
−y

√
k2
x − k2

t −m sgnkx arch
|kx |
kt

)
for k2

x > k2
t .

(19)

In equations (14)–(19)y > 0.
The expression (4) withA(j) defined by (13) leads to the known representation of

the Hankel functions in the form of a contour integral (see, for example, [2] 8.423).
Integrals (18) and (19) have been known up until now form = 0 only (see 1.12 (37),
(41) in [3]).

After the substitutionz = ρ cotθ we obtain for the right-hand side of (8)
π∫

0

dθ

√
kρ

sin3/2 θ
H
(j)

`+1/2

(
kρ

sinθ

)
Pm` (cosθ) exp(−ikzρ cotθ) .
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For kρ � 1, the asymptotic behaviour described in (10), leads us to the integral√
2

π
e∓iπ(`+1)/2

π∫
0

dθ

sinθ
Pm` (cosθ)eiρf (θ)

with

f (θ) = ± k

sinθ
− kz cotθ

which is the same function, as in (11). After taking the integral by the stationary phase
method we find the main contribution

2√
ρ(k2 − k2

z )
1/4
Pm`

(
±kz
k

)
exp

[
±i

(
ρ

√
k2 − k2

z − `π

2
− π

4

)]
.

Comparing the last expression with the asymptotic representation of the left-hand side of (8)
and applying the relationPm` (−x) = (−1)`−mPm` (x), we write

B(j)(kz) = im−`
√

2π
Pm`

(
kz

k

)
. (20)

Hence, we obtain the integral relating the spherical and cylindrical Hankel functions:
∞∫

−∞
dz

√
k

2πr
H
(j)

`+1/2(kr)P
m
`

(z
r

)
e−ikzz = im−`H (j)

m

(
ρ

√
k2 − k2

z

)
Pm`

(
kz

k

)
(21)

where ρ > 0. The formula is valid ifπ > arg
√
k2 − k2

z > 0 for j = 1 and
−π < arg

√
k2 − k2

z 6 0 for j = 2. In particular, for` = m the integrals (21) are
given in [3] (see 1.13(42)).

Now, we rewrite the right-hand side of (21) in an explicit form for the casek2 − k2
z =

ζ < 0. As it is evident from (21), passing fromζ > 0 to ζ < 0 must be performed in the
complex planeπ > arg

√
ζ > 0 for the case ofj = 1 and in the−π < arg

√
ζ 6 0 one for

the case ofj = 2. By making use of the definition

Pm` (x) = (−1)m

2``!
(1 − x2)m/2

d`+m(x2 − 1)`

dx`+m
(22)

one obtains the following relations:

H(1)
m (ix) = 2

π
i−m−1Km(x) Pm`

(
kz

k

)
= imPm

`

(
kz

k

)
for the former case and

H(2)
m (−ix) = 2

π
im+1Km(x) Pm`

(
kz

k

)
= i−mPm

`

(
kz

k

)
for the latter case, whereKm is the Macdonald function andPm

` (x) takes on real values for
|x| > 1:

Pm
` (x) = (−1)m

2``!
(x2 − 1)m/2

d`+m(x2 − 1)`

dx`+m
.

We rewrite (21) fork2
z − k2 > 0 in the form

∞∫
−∞

dz

√
k

2πr
H
(1,2)
`+1/2(kr)P

m
`

(z
r

)
e−ikzz = ∓ 2

π
im−`+1Km

(
ρ

√
k2
z − k2

)Pm
`

(
kz

k

)
. (23)
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For the special case of̀= m = 0 integrals (21), (23) are already known (see, 6.616 (3,4)
in [2]).

Let us add (21) (and equation (23)) forj = 1 to (21) (and equation (23)) forj = 2 (see
equation (17)). There follows an integral relation between the Bessel functions [4]:

∞∫
−∞

dz

√
k

2πr
J`+1/2(kr)P

m
`

(z
r

)
e−ikzz

=

 im−`Jm
(
ρ

√
k2 − k2

z

)
Pm`

(
kz

k

)
for k2

z < k2

0 for k2
z > k2 .

(24)

If we put ` = m in (24) we obtain the integral 2.12.22(7) in [5] (see also 1.13(37) in [3]). If
we subtract (21) (and (23)) forj = 2 from (21) (and (23)) forj = 1 (see (17)), we obtain
similar integral relation between the Neumann functions:

∞∫
−∞

dz

√
k

2πr
Y`+1/2(kr)P

m
`

(z
r

)
e−ikzz

=


im−`Ym

(
ρ

√
k2 − k2

z

)
Pm`

(
kz

k

)
for k2

z < k2

− 2

π
im−`Km

(
ρ

√
k2
z − k2

)Pm
`

(
kz

k

)
for k2

z > k2 .

(25)

In equations (23)–(25)ρ > 0. The integrals 2.13.8(14) in [5], 1.13(41) in [3] and 7.230 in
[6] are the particular (for̀ = m) cases of our expression (25).

Equation (5) withB(j) in form of (20) takes the form

∞∫
−∞

dkz H
(j)
m

(
ρ

√
k2 − k2

z

)
Pm`

(
kz

k

)
eikzz = i`−m

√
2πk

r
H
(j)

`+1/2(kr)P
m
`

(z
r

)
(26)

whereπ > arg
√
k2 − k2

z > 0 for j = 1 and−π < arg
√
k2 − k2

z 6 0 for j = 2. The
integrals 1.13(58), 1.13(59) in [3] and 2.14.2(4), 2.14.2(9) in [5] are particular (` = m)
cases of (26).

The inverse Fourier transform corresponding to (24) and (25) bears the form

k∫
−k

dkz Jm
(
ρ

√
k2 − k2

z

)
Pm`

(
kz

k

)
eikzz = i`−m

√
2πk

r
J`+1/2(kr)P

m
`

(z
r

)
(27)

√
2πk

r
Y`+1/2(kr)P

m
`

(z
r

)
= im−`

k∫
−k

dkz Ym
(
ρ

√
k2 − k2

z

)
Pm`

(
kz

k

)
eikzz

− 4

π

∞∫
k

dkz cos[kzz + π(m− `)/2]Pm
`

(
kz

k

)
Km

(
ρ

√
k2
z − k2

)
. (28)

The special cases of integral (27) for` = m are presented in [3] 1.13(50), 8.7(48) (see also
integrals 2.12.21(5) in [5] and 7.219 in [6]). The integrals 7.302 in [6] and 2.13.8(13) in
[5] are particular cases (for̀= m) of expression (28).
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In the expression (9) we introduce spherical anglesϑ andψ of vectork and variables
ρ andϕ instead ofx, y. Hence, the integral in (9) takes on the form

eim(ψ−π/2)√k
∞∫

0

ρ dρ

(ρ2 + z2)1/4
H
(j)

`+1/2(kr)P
m
` (z/r)

π∫
−π

dϕ e−i(mϕ−kρ sinϕ sinϑ).

The integral overϕ generates the Bessel function. Let us go from integrating over
ρ = z tanθ to integrating over the variableθ , which belongs to the interval [0, π/2] for
z > 0 . We obtain the right-hand side of (9) in the form

2πk1/2z3/2eim(ψ−π/2)
π/2∫
0

sinθ dθ

cos5/2 θ
H
(j)

`+1/2

(
kz

cosθ

)
Pm` (cosθ)Jm(kz tanθ sinϑ) .

For large argument values one can again apply the asymptotic representation of Bessel
functions. Taking the latter integral by the stationary phase method we obtain

2
√

2π

k cosϑ
Pm` (cosϑ) exp

[
i
(
mψ −m

π

2
± kz cosϑ ∓ `

π

2
±m

π

2

)]
where cosϑ =

√
1 − (kt/k)2. On applying (9) we find

C(1,2)(kx, ky) = 2

(2π)3/2k cosϑ
Pm` (cosϑ) exp

[
i
(
mψ −m

π

2
∓ `

π

2
±m

π

2

)]
. (29)

Thus, one can write (9) in the form

∞∫
0

ρ dρ

(ρ2 + z2)1/4
H
(j)

`+1/2(kr)P
m
` (z/r)Jm(ρkt )

= i±(m−`)√2/π

k3/2 cosϑ
Pm` (cosϑ) exp(±ikz cosϑ) (30)

where cosϑ =
√

1 − (kt/k)2, z > 0. The formula (30) is valid ifπ > arg
√
k2 − k2

t > 0
for j = 1 and −π < arg

√
k2 − k2

t 6 0 for j = 2. We can continue analytically the
functions in (30) for the casekt > k. Equation (22) gives

Pm` (±ix) = 5m
` (x)i

∓(`+m)

where

5m
` (x) = (−1)`+m

2``!
(1 + x2)m/2

d`+m(x2 + 1)`

dx`+m
.

Thus we have forkt > k

∞∫
0

ρ dρ

(ρ2 + z2)1/4
H
(1,2)
`+1/2(kr)P

m
` (z/r)Jm(ρkt )

= ∓ i(−1)`
√

2/πk√
k2
t − k2

5m
`

(√
(kt/k)2 − 1

)
exp

(−z√k2
t − k2

)
. (31)
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On applying (30) and (31), we can write
∞∫

0

ρ dρ

(ρ2 + z2)1/4
J`+1/2(kr)P

m
` (z/r)Jm(ρkt )

=


√

2/π

k3/2 cosϑ
Pm` (cosϑ) cos

[
kz cosϑ + π

2
(m− `)

]
for k2

t < k2

0 for k2
t > k2

(32)

∞∫
0

ρ dρ

(ρ2 + z2)1/4
Y`+1/2(kr)P

m
` (z/r)Jm(ρkt )

=


√

2/π

k3/2 cosϑ
Pm` (cosϑ) sin

[
kz cosϑ + π

2
(m− `)

]
for k2

t < k2

(−1)`+1√2/πk√
k2
t − k2

5m
`

(√
(kt/k)2 − 1

)
exp

(−z√k2
t − k2

)
for k2

t > k2

(33)

where cosϑ =
√

1 − (kt/k)2, z > 0.
The special case of the integral (32) for` = m can be found in [2] (see 6.596 (6)). The

integral (6) withC(j) given by (29) can be reduced to (5).

3. Summary

The most essential results of this work represent the pairs of mutual relations between:
(i) the cylindrical and spherical Bessel functions of the first kind (equations (24) and (27)),
(ii) the cylindrical and spherical Bessel functions of the second kind (Neumann functions,
equations (25) and (28)), (iii) the cylindrical and spherical Bessel functions of the third kind
(Hankel functions, equations (21) and (26)).

We also find the interesting integrals of Bessel functions (18), (19) expressed as
elementary functions.

The relations found between the cylindrical and spherical Bessel, Neumann and Hankel
functions are of special importance in a wide class of physical problems concerning finite-
dimensional systems and electron dynamics considered in [7]. The functions appearing in the
integral relations derived in this paper depend on many parameters. As a result, we are led to
a remarkable extension of the existing collections on definite integrals. In available sources
only a few particular cases of the integrals obtained are presented. These special cases of our
relations are cited in the preceding text. The integral (27) expressed in a more complicated
form is known in the particular case ofk = 1 (see [8]). The parameterk can be eliminated
from (27) by the following rescaling procedure:kz/k → p′, kr → r ′, kρ → ρ ′, kz → z′.
Nevertheless, keeping the spectral parameterk in these expressions is essential for practical
uses. If we substitutek = 1, p = cosu, ρ = r sinθ and z = r cosθ into (27) we obtain
the integral given in [8] (see chapter 10 at the end of the section on Bessel functions).
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